
Chapitre 1

Système thermodynamique et

premier principe

1.1 Fonction d’état : mathématique

Soit la fonction f (x, y) = y exp (ax)+xy+bx ln y où a et b sont des constantes.

1) Déterminer
∂f (x, y)

∂x
,
∂f (x, y)

∂y
et df (x, y).

2) Déterminer
∂2f (x, y)

∂x ∂y
.

1.1 Solution

Les dérivées partielles et la différentielle de la fonction f (x, y) = y exp (ax) +
xy + bx ln y s’écrivent,

1)
∂f (x, y)

∂x
= ay exp (ax) + y + b ln y

∂f (x, y)

∂y
= exp (ax) + x+

bx

y

df (x, y) = (ay exp (ax) + y + b ln y) dx+

(
exp (ax) + x+

bx

y

)
dy

2)
∂2f (x, y)

∂x ∂y
= a exp (ax) + 1 +

b

y

1.2 Fonction d’état : gaz parfait

Un gaz parfait est caractérisé par la relation p V = NRT où p est la pression
du gaz, V son volume, T sa température, N le nombre de moles de gaz et R
est une constante.

1) Déterminer la différentielle dp (T, V ).
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2) Déterminer
∂

∂T

(
∂p (T, V )

∂V

)
et

∂

∂V

(
∂p (T, V )

∂T

)
.

1.2 Solution

La différentielle et les dérivées partielles de la pression p (T, V ) d’un gaz parfait
s’écrivent,

1) dp (T, V ) =
NR

V
dT − NRT

V 2
dV .

2)
∂

∂T

(
∂p (T, V )

∂V

)
=

∂

∂V

(
∂p (T, V )

∂T

)
= − NR

V 2
.

1.3 Fonction d’état : élastique

Un élastique de longueur L est une fonction connue L (T, F ) de sa tempéra-
ture T et des forces de norme F exercées sur ses extrémités afin de l’étirer.
L’étirement de l’élastique est caractérisé par deux propriétés physiques :

1) le module de Young, défini comme E =
L

A

(
∂L

∂F

)−1
, où A est l’aire de la

section de l’élastique.

2) le coefficient d’expansion thermique αL =
1

L

∂L

∂T
.

Déterminer la variation de longueur ∆L de l’élastique pour une variation ∆T sa
température et une variation ∆F des forces appliquées. Supposer que ∆T � T
et ∆F � F . Exprimer ∆L en termes de E et αL.

1.3 Solution

A l’aide de la définition (1.7) de la différentielle de la longueur L (T, F ) de
l’élastique, la variation de longueur de l’élastique s’écrit,

∆L =
∂L

∂T
∆T +

∂L

∂F
∆F

et peut être mise sous la forme,

∆L = L

(
1

L

∂L

∂T

)
∆T +

L

A

(
L

A

(
∂L

∂F

)−1)−1
∆F

En utilisant les deux propriétés physiques de l’élastique, on obtient l’expression
suivante pour la variation de longueur de l’élastique,

∆L = LαL ∆T +
L

AE
∆F
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1.4 Fonction d’état : volume

Un récipient de forme conique avec un angle d’ouverture α autour de l’axe
vertical est rempli de liquide (fig. 1.1). Le liquide entre dans le cône à vitesse
v (t) = kt, où k est une constante, par un trou circulaire de diamètre d situé
à sa base. Lorsque la surface du liquide est à hauteur h (t), le volume est

V (t) =
1

3
π tan2 αh3 (t). Initialement, au temps t = 0, la hauteur est h (0) = 0.

Déterminer l’expression du taux de variation de volume V̇ (t) et en déduire
h (t).

v

h

d

a

Fig. 1.1 Un liquide pénètre dans un entonnoir avec un flux laminaire de vitesse v dans un
tube de diamètre d. L’entonnoir est un cône d’angle d’ouverture α. L’axe du cône est vertical.

1.4 Solution

Le taux de variation du volume de liquide est obtenu en prenant la dérivée

temporelle du volume V (t) =
1

3
π tan2 αh3 (t),

V̇ (t) = π tan2 αh2 (t) ḣ (t)

où l’angle α est constant. Le taux de variation de volume du flux de liquide
entrant est exprimé comme,

V̇ (t) = π

(
d

2

)2

v (t) = π
kd2

4
t

En identifiant ces deux expressions de V̇ (t), on obtient,

tan2 αh2 (t) ḣ (t) =
kd2

4
t

qui peut mis sous la forme suivante,

h2 (t) dh (t) =
kd2

4 tan2 α
t dt

L’intégrale de cette équation s’écrit,∫ h(t)

h(0)

h′2 (t′) dh′ (t′) =
kd2

4 tan2 α

∫ t

0

t′ dt′
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Le résultat de cette intégrale est,

1

3
h3 (t) =

kd2

4 tan2 α

1

2
t2

Ainsi, la hauteur de liquide dans le cône est,

h (t) =

(
3 kd2

8 tan2 α

) 1
3

t
2
3

1.5 Identité cyclique de dérivées partielles : gaz parfait

Un gaz parfait est caractérisé par la relation p V = NRT (sect. 1.2) où la
pression p (T, V ) est une fonction de T et V , la température T (p, V ) est une
fonction de p et V et le volume V (T, p) est une fonction de T et p. Déterminer,

∂p (T, V )

∂T

∂T (p, V )

∂V

∂V (T, p)

∂p

1.5 Solution

La dérivée partielle de la pression, de la température et du volume d’un gaz
parfait qui satisfait la relation p V = NRT s’écrivent,

∂p (T, V )

∂T
=

∂

∂T

(
NRT

V

)
=
NR

V

∂T (p, V )

∂V
=

∂

∂V

(
p V

NR

)
=

p

NR

∂V (T, p)

∂p
=

∂

∂p

(
NRT

p

)
= − NR

p2
= − V

p

Ainsi,
∂p (T, V )

∂T

∂T (p, V )

∂V

∂V (T, p)

∂p
= − 1

Ce résultat peut être généralisé (sect. 4.7.2).

1.6 Homme sur un bateau

Un homme se déplace sur le pont horizontal d’un bateau. Initialement, l’homme
et le bateau sont immobiles par rapport à l’eau. L’homme se déplace ensuite
sur le pont, puis s’arrête.

1) En absence de frottement entre le bateau et l’eau, décrire le mouvement du
bateau lorsque l’homme s’arrête.

2) En présence de frottement entre le bateau et l’eau, décrire le mouvement
du bateau lorsque l’homme s’arrête.
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1.6 Solution

1) La quantité de mouvement totale P est la somme des quantités de mouve-
ment du bateau PB et de l’homme par rapport à l’eau PH qui cöıncide avec
le référentiel du centre de masse du système. En l’absence de frottement,
la résultante des forces appliquées au système est nulle et la quantité de
mouvement est conservée. En effet, le théorème du centre de masse (1.13)
implique que,

Ṗ = 0 ⇒ P = cste

Initialement, toutes les quantités de mouvement sont nulles. Par conser-
vation, la quantité de mouvement totale est constante. Par conséquent,
lorsque l’homme s’arrête sa quantité de mouvement est nulle, ce qui im-
plique que la quantité de mouvement du bateau est nulle également. Par
conséquent, le bateau est alors immobile par rapport à l’eau.

PH

PB
F fr

Fig. 1.2 Un homme se déplace avec une quantité de mouvement PH sur le pont horizontal
d’un bateau qui se déplace avec une quantité de mouvement PB . L’eau exerce une force de
frottement visqueux F fr qui s’oppose au mouvement du bateau.

2) Durant le déplacement de l’homme sur le bateau, celui-ci se déplace dans la
direction opposée. Le bateau subit une force de frottement visqueuse F fr

opposée à son déplacement et donc dirigée dans le sens du déplacement
de l’homme (fig. 1.2). D’après le théorème du centre de masse (1.13), l’ac-
tion de la force de frottement modifie la quantité de mouvement totale du
système,

Ṗ = F fr 6= 0

Ainsi, lorsque l’homme s’arrête, la quantité de mouvement du système to-
tale est positive dans le sens de la force de frottement et donc du déplace-
ment de l’homme. Ainsi l’homme est immobile par rapport au bateau qui
se déplace dans le sens de la force de frottement. Toutefois, la norme de la
quantité de mouvement diminue à cause de la force de frottement visqueux
F fr = −λv.
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1.7 Choc mou

On considère un choc mou entre deux objets qui restent accrochés après le
choc. On peut montrer que la variation d’énergie cinétique est maximale pour
un tel choc. On considère que les deux objets sont des points matériels de
M1 et M2 qui forment un système isolé. Le point matériel de masse M1 a
une quantité de mouvement initiale P 1 et le point matériel de masse M2 est
initialement au repos. Les variables d’état sont la quantité de mouvement et
une variable extensive X0 associée à une propriété interne du système (i.e.
l’entropie S comme on le verra au chapitre suivant).

Soit Ei (P , X0) l’énergie et Ui (X0) l’énergie interne juste avant le choc. Soit
Ef (P , X0) l’énergie et Uf (X0) l’énergie interne juste après le choc. En utilisant
les lois de conservation de l’énergie (1.9) et de la quantité de mouvement (1.12),
déterminer la variation d’énergie interne du système ∆U ≡ Uf (X0)− Ui (X0).

1.7 Solution

D’après la loi de conservation (1.12) du premier principe pour un système isolé,
la quantité de mouvement P est une constante. L’énergie du système avant et
après le choc s’écrit,

Ei (P , X0) =
P 2

1

2M1
+ Ui (X0)

Ef (P , X0) =
P 2

1

2 (M1 +M2)
+ Uf (X0)

D’après la loi conservation (1.9) du premier principe pour un système isolé,
l’énergie E (P , X0) est aussi une constante, i.e. Ei (P , X0) = Ef (P , X0). On
peut donc écrire,

P 2
1

2M1
+ Ui (X0) =

P 2
1

2 (M1 +M2)
+ Uf (X0)

Ainsi,

∆U = Uf (X0)− Ui (X0) =
1

2

(
1

M1
− 1

M1 +M2

)
P 2

1 > 0

En conclusion, l’énergie interne d’un système isolé augmente lors d’un choc
mou afin de compenser la perte d’énergie cinétique.

1.8 Evolution de la concentration de sel

Un bassin contient Ns (t) moles de sel dissoutes dans Ne (t) moles d’eau. Le
bassin reçoit de l’eau douce avec un débit entrant constant I in

e . On suppose
que l’eau est complètement brassée dans le bassin de sorte que la concentration
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de sel peut être considérée comme homogène. L’eau salée sort du bassin avec
un débit constant I out

es = I out
s (t)+I out

e (t), où I out
s (t) et I out

e (t) sont les débits
sortants de sel et d’eau salée. Déterminer la concentration de sel,

cs (t) =
Ns (t)

Ns (t) +Ne (t)

comme fonction du temps t compte tenu des conditions initialesNs (0) etNe (0).

1.8 Solution

La dérivée temporelle du nombre de moles de sel dans le bassin est égale au
débit sortant de sel et la dérivée temporelle du nombre de moles d’eau est la
somme des débit d’eau sortant et entrant,

Ṅs (t) = I out
s (t)

Ṅe (t) = I in
e + I out

e (t)

où I in
e est le débit entrant d’eau douce (positif), et Iouts et Ioute sont les débits

sortant de sel et d’eau (négatifs). Comme un débit est une grandeur extensive,
le débit sortant d’eau salée Ioutes est la somme des débits sortants de sel Iouts (t)
et d’eau Ioute (t),

Ioutes = Iouts (t) + Ioute (t)

On suppose que l’eau et le sel sont complètement mélangés dans le bassin de
sorte que la concentration de sel peut être considérée comme homogène. Ainsi,
le débit sortant de sel Iouts (t) est égale au produit de sa concentration molaire
cs (t) dans le bassin et du débit sortant d’eau salée Ioutes ,

Iouts (t) = cs (t) Ioutes

En substituant cette équation pour Iouts (t) dans l’équation de bilan pour le sel
dans le bassin, en utilisant la définition de la concentration molaire,

cs (t) =
Ns (t)

Ns (t) +Ne (t)

et en divisant le résultat par Ns (t), on obtient,

Ṅs (t)

Ns (t)
=

Ioutes

Ns (t) +Ne (t)

En sommant les deux premières équations de bilan, on obtient l’équation de
bilan pour l’eau salée dans le bassin,

Ṅs (t) + Ṅe (t) = I ine + Ioutes

Comme le terme dans le membre de droite de cette équation est constant, on
peut l’intégrer par rapport au temps de t = 0 à t,

Ns (t) +Ne (t) =
(
I ine + Ioutes

)
t+Ns (0) +Ne (0)
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En substituant ce résultat dans l’équation pour Ṅs (t) /Ns (t), on obtient,

Ṅs (t)

Ns (t)
=

Ioutes

(I ine + Ioutes ) t+Ns (0) +Ne (0)

Le résultat de l’intégration par rapport au temps de cette équation s’écrit,

ln

(
Ns (t)

Ns (0)

)
=

Ioutes

I ine + Ioutes

ln

((
I ine + Ioutes

)
t+Ns (0) +Ne (0)

Ns (0) +Ne (0)

)

En prenant l’exponentielle de ce résultat, on obtient,

Ns (t) = Ns (0)

(
1 +

(
I in
e + I out

es

)
t

Ns (0) +Ne (0)

) Ioutes

I ine + Ioutes

En substituant les relations pour Ns (t) et Ns (t) + Ne (t) dans l’expression
concentration molaire de sel cs (t), on obtient,

cs (t) =
Ns (0)

(I ine + Ioutes ) t+Ns (0) +Ne (0)

(
1 +

(
I in
e + I out

es

)
t

Ns (0) +Ne (0)

) Ioutes

I ine + Ioutes

Ce résultat peut être mis sous la forme suivante (fig. 1.3),

cs (t) =
Ns (0)

Ns (0) +Ne (0)

(
1 +

(
I in
e + I out

es

)
t

Ns (0) +Ne (0)

)− 1

1 + I out
es /I in

e

t

cs(t)

O

1

Fig. 1.3 La cencentration de sel cs (t) dans l’eau salée du bassin est une fonction décrois-
sante du temps qui tend asymptotiquement vers 0.
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1.9 Capillarité : angle de contact

Pour tenir compte des effets de capillarité, on considère que l’énergie d’un
système contient des contributions qui sont proportionnelles aux aires des
interfaces entre les différentes parties du système. Pour une goutte de li-
quide mouillant une surface horizontale (fig. 1.4), on suppose que le liquide
à une forme de calotte sphérique. Alors, l’énergie interne est exprimée comme
U (h,R) = (γs` − γsg)πa2 + γ`g A où a = R sin θ =

√
2Rh− h2 est le rayon

et A = 2πRh est l’aire latérale de la calotte sphérique de liquide de hauteur
h obtenue en tronquant la sphère de rayon R avec la surface horizontale du
substrat solide. Les paramètres γs`, γsg, γ`g caractérisent les substances et sont
indépendants de la forme de la goutte. Montrer que l’angle de contact θ est
donné par,

(γs` − γsg) + γ`g cos θ = 0

en minimisant l’énergie interne U (h,R) compte tenu de la condition que le
volume V (h,R) = π

3 h
2 (3R− h) = V0 de la calotte sphérique de liquide est

constant.

R

q

q
gsg

g g

gs

h

Fig. 1.4 Une goutte de liquide sur un substrat horizontal a une forme de calotte sphérique.
L’angle θ est appelé angle de contact. Une tension superficielle est définie pour les trois
interfaces : solide-liquide (γs`), solide-gaz (γsg) et liquide-gaz (γ`g).

1.9 Solution

Afin de minimiser l’énergie interne U (h,R), on utilise la méthode des multi-
plicateurs de Lagrange pour imposer la condition du volume fixé de la goutte,
i.e. V (h,R) = V0. La fonction F (h,R, λ) à minimiser est,

F (h,R, λ) = U (h,R)− λ
(
V (h,R)− V0

)
= (γs` − γsg)π

(
2Rh− h2

)
+ γ`g 2πRh

− λ
(π

3
h2 (3R− h)− V0

)
où λ est le multiplicateur de Lagrange. D’après cette méthode, la dérivée par-
tielle de la fonction F (h,R, λ) par rapport à h doit s’annuler,

∂F

∂h
= (γs` − γsg) 2π (R− h)− γ`g 2πR+ λπ

(
2Rh− h2

)
= 0
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ce qui donne une expression pour le multiplicateur de Lagrange,

λ =

(
2

2Rh− h2

)
(R− h) (γs` − γsg) +

(
2

2Rh− h2

)
Rγ`g

La dérivée partielle de la fonction F (h,R, λ) par rapport à R doit s’annuler
également,

∂F

∂R
= (γs` − γsg) 2πh+ γ`g 2πh− λπh2 = 0

ce qui donne une autre expression pour le multiplicateur de Lagrange,

λ =
2

h
(γs` − γsg) +

2

h
γ`g

En identifiant les deux expressions pour le multiplicateur de Lagrange λ, on
obtient,

(R− h) (γs` − γsg) +Rγ`g = (2R− h) (γs` − γsg) + (2R− h) γ`g

qui peut être mis sous la forme suivante,

(γs` − γsg) +

(
R− h

R

)
γ`g = 0

Par inspection graphique (fig. 1.4),

cos θ =
R− h

R

Ainsi, on obtient la condition suivante,

(γs` − γsg) + γ`g cos θ = 0

1.10 Energie : thermodynamique et mécanique

Un poids de masse M est suspendue à un fil. La force F exercée sur le fil est
telle que le poids descend verticalement avec une vitesse v qui peut varier au
cours du temps.

1) Déterminer l’évolution temporelle de l’énergie mécanique E′ qui est la
somme des énergies cinétiques et potentielles.

2) Déterminer l’évolution temporelle de l’énergie E du système d’après le pre-
mier principe de de la thermodynamique (1.11).
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1.10 Solution

1) Du point de vue de la mécanique, la projection de l’équation du mouvement
de Newton pour le poids, F +M g = M a, le long de l’axe de coordonnée
Oz orienté vers le bas s’écrit,

−F +M g = Mz̈

L’évolution temporelle de l’énergie mécanique E′ est obtenue en multipliant
ce résultat par ż,

d

dt

(
1

2
Mż2 − Mgz

)
= −F ż

Comme l’énergie mécanique E′ est la somme de l’énergie cinétique et de
l’énergie potentielle,

E′ =
1

2
Mż2 − Mgz

le résultat précédent peut être mis sous la forme suivante,

Ė′ = −F ż

2) Du point de vue de la thermodynamique, l’énergie E du système est expri-
mée comme,

E =
1

2
Mż2 + U

où U est l’énergie interne du système. Comme le système est constitué de
la masse M seulement, son poids est une force extérieure. Ainsi, l’énergie
potentielle gravitationnelle n’est pas inclue dans l’énergie E du système.
Vu que l’énergie interne U est une fonction des variables d’état du système
uniquement, elle est indépendante de la hauteur z dans le champ gravita-
tionnel terrestre. Comme il n’y a pas de transfert de chaleur entre le poids
et l’environnement, la puissance thermique s’annule, i.e. PQ = 0. De plus,
on suppose que le poids est indéformable, ce qui implique que la puissance
mécanique de déformation s’annule également, i.e. PW = 0. La puissance
extérieure est due au poids M g et à la force F qui peut modifier l’énergie
cinétique du système,

P ext = F · v +M g · v = −F ż +Mgż

Le premier principe s’écrit, Ė = P ext, ce qui implique que,

Ė = (−F +Mg) ż

Vu que l’énergie interne de ce système est constante, i.e. U̇ = 0, le résultat
précédent se réduit à,

d

dt

(
1

2
Mż2

)
= (−F +Mg) ż
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1.11 Oscillateur harmonique amorti

Un oscillateur harmonique de masse M et de constante élastique k est soumis
à une force de frottement F f (t) = −λv (t) où v (t) est la vitesse du point ma-
tériel et λ > 0. En utilisant l’axe de coordonnées Ox où l’origine O correspond
à la position du point matériel lorsque l’oscillateur harmonique est au repos,
l’équation du mouvement s’écrit,

ẍ+ 2γẋ+ ω2
0 x = 0

où ω2
0 = k/M et γ = λ/ (2M). Dans le régime d’amortissement faible, où

γ � ω0, la position peut être exprimée comme,

x (t) = Ce− γt cos (ω0t+ φ)

où C et φ sont des constantes d’intégration.

1) Exprimer l’énergie mécanique E (t) en termes des coefficients k, C et γ.

2) Déterminer la puissance P (t) dissipée par la force de frottement F f (t).

1.11 Solution

1) L’énergie mécanique de l’oscillateur amorti d’un point matériel de masse
M et de constante élastique k soumis à une coefficient de frottement γ,
où γ � ω0 et ω2

0 = k/M , est la somme de l’énergie cinétique T (t) et de
l’énergie potentielle élastique Ve (t) du ressort,

E (t) = T (t) + Ve (t) =
1

2
M v2 (t) +

1

2
k r2 (t)

où v2 (t) = ẋ2 (t) est la vitesse au carré et r2 (t) = x2 (t) est le déplacement
au carré le long de l’axe Ox. La position de repos du point matériel est à
l’origine. Ainsi,

E (t) =
1

2
M ẋ2 (t) +

1

2
k x2 (t)

Comme la coordonnée de position x (t) s’écrit,

x (t) = Ce− γt cos (ω0t+ φ)

on a,

x2 (t) = C2e− 2γt cos2 (ω0t+ φ)

ẋ2 (t) = ω2
0 C

2e− 2γt sin2 (ω0t+ φ) =
k

M
C2e− 2γt sin2 (ω0t+ φ)

Ainsi, l’énergie mécanique s’écrit,

E (t) =
1

2
k C2e− 2γt

(
sin2 (ω0t+ φ) + cos2 (ω0t+ φ)

)
=

1

2
k C2e− 2γt

2) La puissance dissipée par la force de frottement F f (t) est égale à la dérivée
temporelle de l’énergie mécanique,

P (t) = Ė (t) =
d

dt

(
1

2
k C2e− 2γt

)
= − γ k C2e− 2γt


