CHAPITRE 1

Systeme thermodynamique et

premier principe

1.1 Fonction d’état : mathématique

Soit la fonction f (z,y) = yexp (ax)+xy+bdxIny ol a et b sont des constantes.

Of (z,y) Of (x,y)

1) Déterminer or ' oy et df (z,y).
2
2) Déterminer 65;(;;;/)

Solution

Les dérivées partielles et la différentielle de la fonction f (z,y) = yexp (az) +
zy + bxlny s’écrivent,

1) W:agyexp(am)—i—y—&—blny
of (x,y) bx
—F— =expl(ax)+x+ —
9 p (ax) ;
b
df (z,y) = (ayexp (ax) +y + blny) dz + <exp (ax) + =+ ;) dy
Pf (z,y) _ b
2) W—QQXP(GI)+1+§

1.2 Fonction d’état : gaz parfait

Un gaz parfait est caractérisé par la relation pV = NRT ou p est la pression
du gaz, V son volume, T sa température, N le nombre de moles de gaz et R
est une constante.

1) Déterminer la différentielle dp (T, V).
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9 (V)Y 0 [(p(T,V)
2) Déterminer 5T < 57 > et B < 5T .

Solution

La différentielle et les dérivées partielles de la pression p (T, V) d’un gaz parfait
s’écrivent,

NR NRT

p O ((TV)Y_ 0 (p(TV))_ _NE
oT ov Y% oT V2

1.3 Fonction d’état : élastique

Un élastique de longueur L est une fonction connue L (T, F') de sa tempéra-
ture T et des forces de norme F exercées sur ses extrémités afin de 1’étirer.
L’étirement de 1’élastique est caractérisé par deux propriétés physiques :

L (oL\!
1) le module de Young, défini comme F = 1 <02F) , ou A est aire de la
section de 1’élastique.
2) le coefficient d’expansion thermique ay, = la—L
P meaL =77

Déterminer la variation de longueur AL de ’élastique pour une variation AT sa
température et une variation AF des forces appliquées. Supposer que AT < T
et AF < F. Exprimer AL en termes de E et af.

Solution

A Taide de la définition (1.7) de la différentielle de la longueur L (T, F) de
I’élastique, la variation de longueur de 1’élastique s’écrit,

oL oL
AL=2Lar O AR
ar ' T or

et peut étre mise sous la forme,

-1
1 OL L (L (oL\ "
AL=L(=- = |AT+=| = | == AF
(L 8T) T <A <8F) )
En utilisant les deux propriétés physiques de I’élastique, on obtient I'expression
suivante pour la variation de longueur de 1’élastique,

L
AL = Loy AT + — AF
ag, +AE
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1.4 Fonction d’état : volume

Un récipient de forme conique avec un angle d’ouverture a autour de I'axe
vertical est rempli de liquide (fig. 1.1). Le liquide entre dans le coéne & vitesse
v (t) = kt, ou k est une constante, par un trou circulaire de diametre d situé
a sa base. Lorsque la surface du liquide est & hauteur h (t), le volume est

1
V()= 3 mtan? o h? (t). Initialement, au temps ¢t = 0, la hauteur est h (0) = 0.

Déterminer 'expression du taux de variation de volume V(t) et en déduire

h(?).

Fig. 1.1 Un liquide pénétre dans un entonnoir avec un flux laminaire de vitesse v dans un
tube de diameétre d. L’entonnoir est un cone d’angle d’ouverture a.. L’axe du cone est vertical.

Solution

Le taux de variation du volume de liquide est obtenu en prenant la dérivée

1
temporelle du volume V (t) = 3 mtan? a h3 (t),

V (t) =7 tan® a h? (t) h (1)

ou 'angle a est constant. Le taux de variation de volume du flux de liquide
entrant est exprimé comme,

V(t):ﬂ(;l)Qv(t) :w%th

En identifiant ces deux expressions de V (t), on obtient,

) 2
tan? ah? (t) h(t) = %t
qui peut mis sous la forme suivante,
kd?
h? (t) dh(t) = ——5— tdt
®) ®) 4 tan® o

L’intégrale de cette équation s’écrit,

h(t) kd2 t
/ R () dh (') = ——— / t' dt’
h 0

(0) B 4 tan2 «
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Le résultat de cette intégrale est,
1 kd? 1
—h3(t) = ——— =
3 ®) 4 tan® o 2
Ainsi, la hauteur de liquide dans le cone est,

h(t):(w?)i

Stan? o

2

o

1.5 Identité cyclique de dérivées partielles : gaz parfait

Un gaz parfait est caractérisé par la relation pV = NRT (sect. 1.2) ou la
pression p (T, V) est une fonction de T' et V, la température T (p, V') est une
fonction de p et V' et le volume V (T, p) est une fonction de T et p. Déterminer,

op (T, V) 9T (p, V) OV (T,p)
T oV ap

Solution

La dérivée partielle de la pression, de la température et du volume d’un gaz
parfait qui satisfait la relation pV = NRT s’écrivent,
op (T,V) 0 (NRT) _NR

oT A 1% 1%
aT(p,V) 0 (pV\ »p
oV _6V<NR)_NR
oV (T,p) 0 <NRT) _ NR_V
op o\ p ) P p
Ainsi,

op(T,V) 9T (p,V) OV (T, p)
oT oV p

Ce résultat peut étre généralisé (sect. 4.7.2).

=—1

1.6 Homme sur un bateau

Un homme se déplace sur le pont horizontal d’un bateau. Initialement, I’lhomme
et le bateau sont immobiles par rapport a I'eau. L’homme se déplace ensuite
sur le pont, puis s’arréte.

1) En absence de frottement entre le bateau et I'eau, décrire le mouvement du
bateau lorsque 'homme s’arréte.

2) En présence de frottement entre le bateau et ’eau, décrire le mouvement
du bateau lorsque 'homme s’arréte.
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Solution

1) La quantité de mouvement totale P est la somme des quantités de mouve-
ment du bateau P et de ’homme par rapport a 'eau P g qui coincide avec
le référentiel du centre de masse du systeme. En I'absence de frottement,
la résultante des forces appliquées au systeme est nulle et la quantité de
mouvement est conservée. En effet, le théoreme du centre de masse (1.13)
implique que,

P=0 = P =cste

Initialement, toutes les quantités de mouvement sont nulles. Par conser-
vation, la quantité de mouvement totale est constante. Par conséquent,
lorsque ’homme s’arréte sa quantité de mouvement est nulle, ce qui im-
plique que la quantité de mouvement du bateau est nulle également. Par
conséquent, le bateau est alors immobile par rapport a 1’eau.

Fig. 1.2 Un homme se déplace avec une quantité de mouvement P g sur le pont horizontal
d’un bateau qui se déplace avec une quantité de mouvement P p. L’eau exerce une force de
frottement visqueux F ' qui s’oppose au mouvement du bateau.

2) Durant le déplacement de ’homme sur le bateau, celui-ci se déplace dans la
direction opposée. Le bateau subit une force de frottement visqueuse Ff
opposée a son déplacement et donc dirigée dans le sens du déplacement
de 'homme (fig. 1.2). D’apres le théoréme du centre de masse (1.13), lac-
tion de la force de frottement modifie la quantité de mouvement totale du
systeme,

P=F"+o0

Ainsi, lorsque 'homme s’arréte, la quantité de mouvement du systéeme to-
tale est positive dans le sens de la force de frottement et donc du déplace-
ment de 'homme. Ainsi ’homme est immobile par rapport au bateau qui
se déplace dans le sens de la force de frottement. Toutefois, la norme de la
qufantité de mouvement diminue a cause de la force de frottement visqueux
F"=—-)v.
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1.7 Choc mou

On considére un choc mou entre deux objets qui restent accrochés apres le
choc. On peut montrer que la variation d’énergie cinétique est maximale pour
un tel choc. On considere que les deux objets sont des points matériels de
M; et My qui forment un systeme isolé. Le point matériel de masse M; a
une quantité de mouvement initiale Py et le point matériel de masse M est
initialement au repos. Les variables d’état sont la quantité de mouvement et
une variable extensive X associée & une propriété interne du systéme (i.e.
Pentropie S comme on le verra au chapitre suivant).

Soit E; (P, Xy) énergie et U, (Xo) Pénergie interne juste avant le choc. Soit
E; (P, Xy) Dénergie et Uy (X) énergie interne juste apres le choc. En utilisant
les lois de conservation de I’énergie (1.9) et de la quantité de mouvement (1.12),
déterminer la variation d’énergie interne du systeme AU = Uy (Xo) — U; (Xo).

Solution
D’apres la loi de conservation (1.12) du premier principe pour un systéme isolé,

la quantité de mouvement P est une constante. L’énergie du systeme avant et
apres le choc s’écrit,

P
Ei (P,Xo) = 2M1 +U1 (X())
2
Ef (P, X)) = ———— 4+ Us (X
f( 0) 2(M1+M2) f( 0)

D’apres la loi conservation (1.9) du premier principe pour un systéme isolé,
Iénergie E (P, Xy) est aussi une constante, i.e. E; (P,Xo) = Ef (P, X(). On
peut donc écrire,

2 2

Pl 1
+ Ui (Xo) = 57777~ + Ur (X
2 M, (0) 2(M1+M2) f( 0)
Ainsi,
AU = Us (Xo)— Ui (Xo) =+ (= - — LY p2=y
A PR o \M, T M+ M) !

En conclusion, ’énergie interne d’un systéme isolé augmente lors d’un choc
mou afin de compenser la perte d’énergie cinétique.

1.8 Evolution de la concentration de sel

Un bassin contient N (t) moles de sel dissoutes dans N, (t) moles d’eau. Le
bassin recoit de I’eau douce avec un débit entrant constant I.". On suppose
que I'eau est completement brassée dans le bassin de sorte que la concentration
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de sel peut étre considérée comme homogene. L’eau salée sort du bassin avec
un débit constant 12" = 129 (¢)+1°1 (t), ot I (t) et 12" (¢) sont les débits
sortants de sel et d’eau salée. Déterminer la concentration de sel,

N (1)

S AOES A

comme fonction du temps ¢ compte tenu des conditions initiales N (0) et N, (0).

Solution

La dérivée temporelle du nombre de moles de sel dans le bassin est égale au
débit sortant de sel et la dérivée temporelle du nombre de moles d’eau est la
somme des débit d’eau sortant et entrant,

N, () = 19" (¢)
N, (1) = I + 12" (1)

olt 1™ est le débit entrant d’eau douce (positif), et IS et I2U sont les débits
sortant de sel et d’eau (négatifs). Comme un débit est une grandeur extensive,
le débit sortant d’eau salée IO est la somme des débits sortants de sel I (¢)
et d’eau I°"* (1),

198 = I3 (1) + 12" (1)
On suppose que 'eau et le sel sont complétement mélangés dans le bassin de
sorte que la concentration de sel peut étre considérée comme homogene. Ainsi,

le débit sortant de sel 12" (¢) est égale au produit de sa concentration molaire

¢s () dans le bassin et du débit sortant d’eau salée M,

1 (1) = e () 122"

En substituant cette équation pour 72" (¢) dans 1’équation de bilan pour le sel
dans le bassin, en utilisant la définition de la concentration molaire,
N; (1)

s() =~~~
0=y orNo
et en divisant le résultat par N (t), on obtient,

Ny (t) e
Ng(t)  Ng(t)+ N (t)

En sommant les deux premieres équations de bilan, on obtient I’équation de
bilan pour ’eau salée dans le bassin,

Ns (t) + Ne (t) = Ién + Ig;t

Comme le terme dans le membre de droite de cette équation est constant, on
peut lintégrer par rapport au temps de t =0 a ¢,

N, (t) + N (t) = (I + I2™) t + Ny (0) + Ne (0)
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En substituant ce résultat dans ’équation pour Ny (t) /Nj (t), on obtient,

N, (t) Iout

Ng(t) (I8 418t + N, (0) + N (0)

Le résultat de I'intégration par rapport au temps de cette équation s’écrit,

o (N ozt (I £ N (0) + N (0)
n = = n
NO) T I I N, () + N. (0]

En prenant I'exponentielle de ce résultat, on obtient,

12
(L2 +12) ¢ ) I+ It

N, (t) = N, (0) <1+ N, (0) + N. (0)

En substituant les relations pour Nj (t) et N, (t) + N, (t) dans 'expression
concentration molaire de sel ¢, (), on obtient,

12
e (t) = N (0) - (I 1900y ¢\ Iin + I
® (Iin + Tout) ¢ + N (0) + N, (0) N; (0) + N, (0)

Ce résultat peut étre mis sous la forme suivante (fig. 1.3),

1
. (12 4 1) ¢\ T I
A AOES AT (”fWW)

0 t
Fig. 1.3 La cencentration de sel cs (t) dans I’eau salée du bassin est une fonction décrois-
sante du temps qui tend asymptotiquement vers 0.
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1.9 Capillarité : angle de contact

Pour tenir compte des effets de capillarité, on considere que I’énergie d’un
systeme contient des contributions qui sont proportionnelles aux aires des
interfaces entre les différentes parties du systéme. Pour une goutte de li-
quide mouillant une surface horizontale (fig. 1.4), on suppose que le liquide
a une forme de calotte sphérique. Alors, ’énergie interne est exprimée comme
U (h,R) = (Vs — Vsg) Ta* + Yeg A ot a = Rsinf = v2Rh — h? est le rayon
et A = 2w Rh est laire latérale de la calotte sphérique de liquide de hauteur
h obtenue en tronquant la sphere de rayon R avec la surface horizontale du
substrat solide. Les parametres 7 ¢, Vg, Yeg caractérisent les substances et sont
indépendants de la forme de la goutte. Montrer que ’angle de contact 6 est
donné par,
(st — ’Ysy) +yegcos0 =0

en minimisant ’énergie interne U (h, R) compte tenu de la condition que le
volume V (h,R) = S h* (3R — h) = Vj de la calotte sphérique de liquide est
constant.

Fig. 1.4 Une goutte de liquide sur un substrat horizontal a une forme de calotte sphérique.
L’angle 0 est appelé angle de contact. Une tension superficielle est définie pour les trois
interfaces : solide-liquide (vs¢), solide-gaz (ysg) et liquide-gaz (veq)-

Solution

Afin de minimiser ’énergie interne U (h, R), on utilise la méthode des multi-
plicateurs de Lagrange pour imposer la condition du volume fixé de la goutte,
i.e. V (h,R) = V. La fonction F' (h, R, \) & minimiser est,
F(h,R\) =U (h,R) — )\(V(h,R) - VO)
= (Vst — Vsg) ™ (2Rh — B®) + 4 27 RA
- A(%hQ(SR— h) — vo)

ou A est le multiplicateur de Lagrange. D’apres cette méthode, la dérivée par-
tielle de la fonction F' (h, R, \) par rapport a h doit s’annuler,

OF
o = (lst = Ysg) 27 (R = h) = 70 2R+ Am (2Rh— h*) =0
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ce qui donne une expression pour le multiplicateur de Lagrange,

2 2
A= (2Rh_hz> (R— h) (vse = Vsg) + (2Rh_h2> Ryig

La dérivée partielle de la fonction F' (h, R, \) par rapport a R doit s’annuler
également,

oF
= (Yst = Ysg) 27h + Yeg 2h — Awh? = 0

ce qui donne une autre expression pour le multiplicateur de Lagrange,

2 2

A= E (’Ysl _’759) + E’Y@g

En identifiant les deux expressions pour le multiplicateur de Lagrange A, on
obtient,

(R = h)(yse — 759) + Ryey = (2R — h) (vse — '759) + (2R - h) Veg

qui peut étre mis sous la forme suivante,

R—h
('Ysé - 789) + () Yeg = 0

Par inspection graphique (fig. 1.4),

cosf = H

R

Ainsi, on obtient la condition suivante,

(Vse — %g) + Yeg cos =0

1.10 Energie : thermodynamique et mécanique

Un poids de masse M est suspendue a un fil. La force F' exercée sur le fil est
telle que le poids descend verticalement avec une vitesse v qui peut varier au
cours du temps.

1) Déterminer I’évolution temporelle de Iénergie mécanique E' qui est la
somme des énergies cinétiques et potentielles.

2) Déterminer I’évolution temporelle de 'énergie E du systeme d’apres le pre-
mier principe de de la thermodynamique (1.11).
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Solution

1)

Du point de vue de la mécanique, la projection de I’équation du mouvement
de Newton pour le poids, F + M g = M a, le long de ’axe de coordonnée
Oz orienté vers le bas s’écrit,

—F+Mg=Mz

L’évolution temporelle de 1’énergie mécanique E’ est obtenue en multipliant

ce résultat par 2,
d<1M?sz>Fé
dt \ 2 9=) =

Comme D’énergie mécanique E’ est la somme de I’énergie cinétique et de

I’énergie potentielle,

E%:%Au2—bmz

le résultat précédent peut étre mis sous la forme suivante,

E' =-F:

Du point de vue de la thermodynamique, I’énergie E' du systeme est expri-
mée comme,
E:%M¥+U

ou U est 'énergie interne du systéme. Comme le systéme est constitué de
la masse M seulement, son poids est une force extérieure. Ainsi, I'énergie
potentielle gravitationnelle n’est pas inclue dans I’énergie E du systeme.
Vu que I'énergie interne U est une fonction des variables d’état du systeme
uniquement, elle est indépendante de la hauteur z dans le champ gravita-
tionnel terrestre. Comme il n’y a pas de transfert de chaleur entre le poids
et 'environnement, la puissance thermique s’annule, i.e. Py = 0. De plus,
on suppose que le poids est indéformable, ce qui implique que la puissance
mécanique de déformation s’annule également, i.e. Py = 0. La puissance
extérieure est due au poids M g et a la force F' qui peut modifier I’énergie
cinétique du systeme,

P> =F.v+Mg-v=—Fi+Mgs
Le premier principe s’écrit, E =Pt ce qui implique que,
E=(-F+Mg):

Vu que I’énergie interne de ce systéeme est constante, i.e. U =0, le résultat
précédent se réduit a,

d (1
—(=Mz*) =(-F+ Mg):
i (332) = F g2
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1.11 Oscillateur harmonique amorti

Un oscillateur harmonique de masse M et de constante élastique &k est soumis
a une force de frottement F; (t) = — Av (t) ol v (¢) est la vitesse du point ma-
tériel et A > 0. En utilisant ’axe de coordonnées Ox ol l'origine O correspond
a la position du point matériel lorsque 'oscillateur harmonique est au repos,
I’équation du mouvement s’écrit,

i4+2vi+wiz =0
ot w3 = k/M et v = \/(2M). Dans le régime d’amortissement faible, olt
v < wy, la position peut étre exprimée comme,
x (t) = Ce™ " cos (wot + @)
ou C et ¢ sont des constantes d’intégration.

1) Exprimer l’énergie mécanique F (t) en termes des coefficients k, C et ~.
2) Déterminer la puissance P (t) dissipée par la force de frottement F'y (t).

Solution

1) L’énergie mécanique de Doscillateur amorti d’un point matériel de masse
M et de constante élastique k soumis a une coefficient de frottement -y,
oll v < wo et w = k/M, est la somme de Dénergie cinétique T (t) et de
I’énergie potentielle élastique V, (¢) du ressort,

E()=T @) +V,(t) = %M& (t)+%kr2 )

ot v? (t) = 22 (t) est la vitesse au carré et 72 (t) = 22 (t) est le déplacement
au carré le long de 'axe Ox. La position de repos du point matériel est a
Porigine. Ainsi,
1, 1,
E(t) = §M:E (t)+§kx (t)
Comme la coordonnée de position x (t) s’écrit,
z(t) = Ce™ " cos (wot + ¢)
on a,

22 (t) = C%e™ 27" cos? (wot + ¢)

k
2 (t) = wi C%e™ P sin? (wot + ¢) = i C%e™ P sin? (wot + )
Ainsi, I’énergie mécanique s’écrit,
1 1
E(t)= 3 kC?e 27t (sin2 (wot + ¢) + cos? (wot + ) ) =3 kC?e 2t

2) La puissance dissipée par la force de frottement F'y (¢) est égale a la dérivée
temporelle de ’énergie mécanique,

. 1
P(t)=E(t) = % (2 k‘CQe_%t) = —ykC? 2"



